Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Trends Psychiatry Psychother ; 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-20233513
2.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2303598

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.06.522349

ABSTRACT

Viruses mutate under a variety of selection pressures, allowing them to continuously adapt to their hosts. Mutations in SARS-CoV-2 have shown effective evasion of population immunity and increased affinity to host factors, in particular to the cellular receptor ACE2. In the dynamic environment of the respiratory tract, the question arises, if not only affinity, but also force-stability of the SARS-CoV-2:ACE2 bond, initiating infection of host cells, might be a selection factor for mutations. Here, we use magnetic tweezers (MT) to study the effect of amino acid substitutions in variants of concern (VOCs) on RBD:ACE2 bond kinetics with and without external load using a previously established assay. Matching bulk-affinity measurements determined in literature, we find higher affinity for all VOCs compared to wt. In contrast to that, Alpha is the only VOC markedly different from the wild type showing higher mechanical resilience under force. Investigating the RBD:ACE2 interactions with molecular dynamics simulations, we were able to rationalize the mechanistic molecular origins of this increase in force-stability. Our study emphasizes the diversity of contributions to the assertiveness of variants and establishes force-stability as one of several factors for fitness. Understanding fitness-advantages opens the possibility for prediction of likely mutations allowing rapid adjustment of therapeutics, vaccination, and intervention measures.


Subject(s)
Seizures
4.
Clin Immunol ; 242: 109092, 2022 09.
Article in English | MEDLINE | ID: covidwho-2035867

ABSTRACT

Vaccines induce antibodies, but T cell responses are also important for protection against Coronavirus disease 2019. Here, we analyzed the frequency of memory T cells in infected and/or vaccinated individuals and observed a decrease in central memory T cells in individuals who were vaccinated following COVID-19 infection.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes/cytology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Memory T Cells/cytology , Vaccination
5.
Continental Shelf Research ; : 104800, 2022.
Article in English | ScienceDirect | ID: covidwho-1914284

ABSTRACT

Coasts are highly dynamic systems. Understanding how they respond to individual storms events and to future climate change is difficult as local boundary conditions determines their evolutionary trajectory. A lack of field data at this local scale therefore limits the ability of managers and researchers to apply existing modelling frameworks to their region of interest to ensure preservation of the natural environment. Data acquisition through low-cost Unoccupied Aerial Vehicles (UAVs) has become a viable means for obtaining high-resolution surveys (cm-scale) on the coast for whole sediment compartments (km-scale). A continued limitation however is the intensive labour costs involved in data acquisition. Here we show the power of Citizen Science in providing high quality, cost-effective data collection, when provided with adequate training and resources along a high-energy, temperate coast in Victoria, Australia. This was conducted through the Victorian Coastal Monitoring Program (VCMP), formed in 2018 as a collaboration between Australian universities and the Victorian State Government. As of 2022, this program covered 28 sites, with over 450 individual surveys taken at 6–8 week intervals. The VCMP has guided and driven significant management actions on the coast from realignment of coastal walking paths for public safety to measuring sand renourishment success. In this paper we (i) present the Citizen Science UAV program methodology, as an example that can be replicated in other jurisdictions, and (ii) illustrate, through a case-study of a sandy beach and rocky cliff, the benefits and precision achievable using our Citizen Science approach. We outline how outputs can be made widely available and applied to coastal management, with the aid of data portals and decision support systems. This data accessibility has been central to our community engagement, enabling citizen scientists to conduct their own bespoke analysis for co-creation of management solutions for their local area. It was also found to be key for facilitating continued community engagement during one of the world's longest lockdowns of the COVID-19 pandemic, impacting the program for almost two years.

6.
RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao ; - (Special Issue 47):239-250, 2022.
Article in Portuguese | Scopus | ID: covidwho-1787396

ABSTRACT

Virtual tourism is currently a reality that has been making progress in particular with the need to redefine the strategy for tourism caused by the emergence of Covid-19. This bibliometric study aims to analyze the evolution of virtual tourism over the years and during the period of the pandemic with the identification of themes and related areas of scientific research. Data from the scientific production of the Scopus database were collected using the keywords “Virtual” and “Tourism”. The study includes descriptive analysis and co-occurrence analyzes of terms and keywords using the VOSviewer software. The results show that the interest of researchers in the topic of virtual tourism increased in the year 2020-21, a period in which a pandemic occurred and that the main areas of research are related to technologies such as virtual reality, augmented reality, 3D, information technologies. alongside themes such as cultural heritage and sustainable tourism development. © 2022, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.

7.
Proc Natl Acad Sci U S A ; 119(14): e2114397119, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1751828

ABSTRACT

SignificanceIn the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage. Our assay is sensitive to blocking agents preventing RBD:ACE2 bond formation. It will thus provide a powerful approach to investigate the modes of action of neutralizing antibodies and other agents designed to block RBD binding to ACE2 that are currently developed as potential COVID-19 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/diagnosis , Disease Susceptibility , Humans , Protein Binding
8.
Transplantation ; 106(3): 641-647, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1703842

ABSTRACT

BACKGROUND: Heart transplant (HT) recipients may be at higher risk of acquiring SARS-CoV-2 infection and developing critical illness. The aim of this study is to describe characteristics and outcomes of HT recipients infected by SARS-COV-2, from a high-volume transplant center. METHODS: We have described data of all adult HT recipients with confirmed coronavirus disease 2019 by RT-PCR in nasopharyngeal samples from April 5, 2020, to January 5, 2021. Outcomes and follow-up were recorded until February 5, 2021. RESULTS: Forty patients were included. Twenty-four patients (60%) were men; the median age was 53 (40-60) y old; median HT time was 34 mo; and median follow-up time 162 d. The majority needed hospitalization (83%). Immunosuppressive therapy was reduced/withdrawn in the majority of patients, except from steroids, which were maintained. Seventeen patients (42.5%) were classified as having severe disease according to the ordinal scale developed by the World Health Organization Committee. They tended to have lower absolute lymphocyte count (P < 0.001) during follow-up when compared with patients with mild disease. Thirty-day mortality was 12.5%. However, a longer follow-up revealed increased later mortality (27.5%), with median time to death around 35 d. Bacterial nosocomial infections were a leading cause of death. Cardiac allograft rejection (10%) and ventricular dysfunction (12.5%) were also not negligible. CONCLUSIONS: Major findings of this study corroborate other cohorts' results, but it also reports significant rate of later events, suggesting that a strict midterm surveillance is advisable to HT recipients with coronavirus disease 2019.


Subject(s)
COVID-19 , Heart Transplantation , Adult , Heart Transplantation/adverse effects , Hospitalization , Humans , Immunosuppression Therapy , Male , Middle Aged , SARS-CoV-2 , Transplant Recipients
10.
European Journal of Tourism Hospitality and Recreation ; 11(1):22-33, 2021.
Article in English | Web of Science | ID: covidwho-1666919

ABSTRACT

Until the emergence of the COVID-19 pandemic, tourism was one of the sectors with the greatest growth potential on a global scale. It is now highlighted as one of the hardest hit sectors in economic terms and requires strategic recovery capacity coupled with technological innovation. Technology and innovation could provide a strong contribution to the development of tourism by integrating knowledge about tourism products, services and experiences and the new needs and behaviours of consumers. This study analysed the scientific productions on technological innovation in the tourism sector using literature review and bibliometric analysis techniques, with data collected from the main databases of international relevance, Web of Science and Scopus. This study presents the mapping and cluster structures for the trends and dynamics of the investigations on the discovered research themes using the VOSviewer software. The results indicate that research related to innovation and technology in tourism has evolved in recent years, as well as highlighting the main areas of activity and presenting contributions to possible future lines of research.

12.
Brain Behav Immun Health ; 5: 100076, 2020 May.
Article in English | MEDLINE | ID: covidwho-1525696

ABSTRACT

In the recent months, the world was taken by surprise by the outbreak of a coronavirus (SARS-CoV-2) pandemic (COVID-19). The COVID-19 pandemic is a unique opportunity to advance the understanding of the association of respiratory viruses with mood disorders and suicide. In this editorial, we explore three insights to the neuropsychoneuroimmunology of mood disorders that could be taken from the COVID-19 pandemic.

14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.08.455468

ABSTRACT

SARS-CoV-2 infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and multivalent interactions play critical roles, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load and in defined geometries. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2-5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate in comparison to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a novel way to investigate the roles of mutations and blocking agents for targeted pharmaceutical intervention.


Subject(s)
Severe Acute Respiratory Syndrome
15.
PLoS Comput Biol ; 17(7): e1009149, 2021 07.
Article in English | MEDLINE | ID: covidwho-1325366

ABSTRACT

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , Systems Analysis , Basic Reproduction Number , COVID-19/etiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , COVID-19 Vaccines , Computational Biology , Computer Simulation , Contact Tracing , Disease Progression , Hand Disinfection , Host Microbial Interactions , Humans , Masks , Mathematical Concepts , Pandemics , Physical Distancing , Quarantine , Software
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.31.21258018

ABSTRACT

Early waves of the SARS-CoV-2 pandemic were driven by importation events and subsequent policy responses. However, epidemic dynamics in 2021 are largely driven by the spread of more transmissible and/or immune-evading variants, which in turn are countered by vaccination programs. Here we describe updates to the methodology of Covasim (COVID-19 Agent-based Simulator) to account for immune trajectories over time, correlates of protection, co-circulation of different variants and the roll-out of multiple vaccines. We have extended recent work on neutralizing antibodies (NAbs) as a correlate of protection to account for protection against infection, symptomatic COVID-19, and severe disease using a joint estimation approach. We find that NAbs are strongly correlated with infection blocking and that natural infection provides stronger protection than vaccination for the same level of NAbs, though vaccines typically produce higher NAbs. We find only relatively weak correlations between NAbs and the probability of developing symptoms given a breakthrough infection, or the probability of severe disease given symptoms. A more refined understanding of breakthrough infections in individuals with natural and vaccine-derived immunity will have implications for timing of booster vaccines, the impact of emerging variants of concern on critical vaccination thresholds, and the need for ongoing non-pharmaceutical interventions.


Subject(s)
COVID-19 , Breakthrough Pain
17.
Nat Commun ; 12(1): 2993, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1237998

ABSTRACT

Initial COVID-19 containment in the United States focused on limiting mobility, including school and workplace closures. However, these interventions have had enormous societal and economic costs. Here, we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine: routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and placing their contacts in quarantine. We perform this analysis using Covasim, an open-source agent-based model, which has been calibrated to detailed demographic, mobility, and epidemiological data for the Seattle region from January through June 2020. With current levels of mask use and schools remaining closed, we find that high but achievable levels of testing and tracing are sufficient to maintain epidemic control even under a return to full workplace and community mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and subsequent scale-up of testing and tracing programs through September provided real-world validation of our predictions. Although we show that test-trace-quarantine can control the epidemic in both theory and practice, its success is contingent on high testing and tracing rates, high quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use. Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong performance in all aspects of the program is required.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Quarantine/methods , Humans , SARS-CoV-2/isolation & purification , United States
18.
Ann Neurol ; 89(5): 1041-1045, 2021 05.
Article in English | MEDLINE | ID: covidwho-1100843

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) can present with distinct neurological manifestations. This study shows that inflammatory neurological diseases were associated with increased levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12, chemokine (C-X-C motif) ligand 8 (CXCL8), and CXCL10 in the cerebrospinal fluid. Conversely, encephalopathy was associated with high serum levels of IL-6, CXCL8, and active tumor growth factor ß1. Inflammatory syndromes of the central nervous system in COVID-19 can appear early, as a parainfectious process without significant systemic involvement, or without direct evidence of severe acute respiratory syndrome coronavirus 2 neuroinvasion. At the same time, encephalopathy is mainly influenced by peripheral events, including inflammatory cytokines. ANN NEUROL 2021;89:1041-1045.


Subject(s)
COVID-19/blood , COVID-19/cerebrospinal fluid , Inflammation Mediators/blood , Inflammation Mediators/cerebrospinal fluid , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/epidemiology , Cytokines/blood , Cytokines/cerebrospinal fluid , Humans , Nervous System Diseases/epidemiology
19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.07.20248970

ABSTRACT

Cytokine storms and hyperinflammation, potentially controlled by glucocorticoids, occur in COVID-19; the roles of lipid mediators and acetylcholine (ACh) and how glucocorticoid therapy affects their release in Covid-19 remain unclear. Blood and bronchoalveolar lavage (BAL) samples from SARS-CoV-2- and non-SARS-CoV-2-infected subjects were collected for metabolomic/lipidomic, cytokines, soluble CD14 (sCD14), and ACh, and CD14 and CD36-expressing monocyte/macrophage subpopulation analyses. Transcriptome reanalysis of pulmonary biopsies was performed by assessing coexpression, differential expression, and biological networks. Correlations of lipid mediators, sCD14, and ACh with glucocorticoid treatment were evaluated. This study enrolled 190 participants with Covid-19 at different disease stages, 13 hospitalized non-Covid-19 patients, and 39 healthy-participants. SARS-CoV-2 infection increased blood levels of arachidonic acid (AA), 5-HETE, 11-HETE, sCD14, and ACh but decreased monocyte CD14 and CD36 expression. 5-HETE, 11-HETE, cytokines, ACh, and neutrophils were higher in BAL than in circulation (fold-change for 5-HETE 389.0; 11-HETE 13.6; ACh 18.7, neutrophil 177.5, respectively). Only AA was higher in circulation than in BAL samples (fold-change 7.7). Results were considered significant at P<0.05, 95%CI. Transcriptome data revealed a unique gene expression profile associated with AA, 5-HETE, 11-HETE, ACh, and their receptors in Covid-19. Glucocorticoid treatment in severe/critical cases lowered ACh without impacting disease outcome. We first report that pulmonary inflammation and the worst outcomes in Covid-19 are associated with high levels of ACh and lipid mediators. Glucocorticoid therapy only reduced ACh, and we suggest that treatment may be started early, in combination with AA metabolism inhibitors, to better benefit severe/critical patients.


Subject(s)
COVID-19 , Pneumonia
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.03.20225409

ABSTRACT

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.


Subject(s)
COVID-19 , Cognition Disorders
SELECTION OF CITATIONS
SEARCH DETAIL